Linear Estimate for the Number of Zeros of Abelian Integrals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS

We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

متن کامل

linear estimate of the number of zeros of abelian integrals for a kind of quintic hamiltonians

we consider the number of zeros of the integral $i(h) = oint_{gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. we prove that the number of zeros of $i(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

متن کامل

linear estimate of the number of zeros of abelian integrals for a kind of quintic hamiltonians

we consider the number of zeros of the integral $i(h) = oint_{gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. we prove that the number of zeros of $i(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

متن کامل

Linear Estimate of the Number of Zeros of Abelian Integrals for a Kind of Quintic Hamiltonians

We consider the number of zeros of the integral I(h) = ∮ Γh ω of real polynomial form ω of degree not greater than n over a family of vanishing cycles on curves Γh : y 2 + 3x − x = h, where the integral is considered as a function of the parameter h. We prove that the number of zeros of I(h), for 0 < h < 2, is bounded above by 2[n−1 2 ] + 1.

متن کامل

Linear Estimate of the Number of Zeros of Abelian Integrals for a Kind of Quartic Hamiltonians*

where f (x, y) and g(x, y) are real polynomials of x and y with degree not greater than n, 1h is an oval lying on real algebraic curve H(x, y)=h, deg H(x, y)=m (H(x, y) are called Hamiltonians), and 7 is a maximal interval of existence of 1h . This question is called the weakened Hilbert 16th problem, posed by V.I. Arnold in [1, 2]. The general result of solving the weakened Hilbert 16th proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Qualitative Theory of Dynamical Systems

سال: 2016

ISSN: 1575-5460,1662-3592

DOI: 10.1007/s12346-016-0213-0